3.2301 \(\int (1+x)^{3/2} (a+b x) (1-x+x^2)^{3/2} \, dx\)

Optimal. Leaf size=365 \[ \frac{18\ 3^{3/4} \sqrt{2+\sqrt{3}} \sqrt{x^2-x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} (x+1)^{3/2} \left (91 a-55 \left (1-\sqrt{3}\right ) b\right ) \text{EllipticF}\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right ),-7-4 \sqrt{3}\right )}{5005 \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \left (x^3+1\right )}+\frac{18 \sqrt{x^2-x+1} \sqrt{x+1} \left (91 a x+55 b x^2\right )}{5005}+\frac{2}{143} \sqrt{x^2-x+1} \left (x^3+1\right ) \sqrt{x+1} \left (13 a x+11 b x^2\right )+\frac{54 b \sqrt{x^2-x+1} \sqrt{x+1}}{91 \left (x+\sqrt{3}+1\right )}-\frac{27 \sqrt [4]{3} \sqrt{2-\sqrt{3}} b \sqrt{x^2-x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} (x+1)^{3/2} E\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{91 \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \left (x^3+1\right )} \]

[Out]

(54*b*Sqrt[1 + x]*Sqrt[1 - x + x^2])/(91*(1 + Sqrt[3] + x)) + (18*Sqrt[1 + x]*Sqrt[1 - x + x^2]*(91*a*x + 55*b
*x^2))/5005 + (2*Sqrt[1 + x]*Sqrt[1 - x + x^2]*(13*a*x + 11*b*x^2)*(1 + x^3))/143 - (27*3^(1/4)*Sqrt[2 - Sqrt[
3]]*b*(1 + x)^(3/2)*Sqrt[1 - x + x^2]*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] +
x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(91*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*(1 + x^3)) + (18*3^(3/4)*Sqrt[2
+ Sqrt[3]]*(91*a - 55*(1 - Sqrt[3])*b)*(1 + x)^(3/2)*Sqrt[1 - x + x^2]*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]
*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(5005*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^
2]*(1 + x^3))

________________________________________________________________________________________

Rubi [A]  time = 0.205296, antiderivative size = 365, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {809, 1853, 1878, 218, 1877} \[ \frac{18 \sqrt{x^2-x+1} \sqrt{x+1} \left (91 a x+55 b x^2\right )}{5005}+\frac{2}{143} \sqrt{x^2-x+1} \left (x^3+1\right ) \sqrt{x+1} \left (13 a x+11 b x^2\right )+\frac{18\ 3^{3/4} \sqrt{2+\sqrt{3}} \sqrt{x^2-x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} (x+1)^{3/2} \left (91 a-55 \left (1-\sqrt{3}\right ) b\right ) F\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{5005 \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \left (x^3+1\right )}+\frac{54 b \sqrt{x^2-x+1} \sqrt{x+1}}{91 \left (x+\sqrt{3}+1\right )}-\frac{27 \sqrt [4]{3} \sqrt{2-\sqrt{3}} b \sqrt{x^2-x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} (x+1)^{3/2} E\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{91 \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \left (x^3+1\right )} \]

Antiderivative was successfully verified.

[In]

Int[(1 + x)^(3/2)*(a + b*x)*(1 - x + x^2)^(3/2),x]

[Out]

(54*b*Sqrt[1 + x]*Sqrt[1 - x + x^2])/(91*(1 + Sqrt[3] + x)) + (18*Sqrt[1 + x]*Sqrt[1 - x + x^2]*(91*a*x + 55*b
*x^2))/5005 + (2*Sqrt[1 + x]*Sqrt[1 - x + x^2]*(13*a*x + 11*b*x^2)*(1 + x^3))/143 - (27*3^(1/4)*Sqrt[2 - Sqrt[
3]]*b*(1 + x)^(3/2)*Sqrt[1 - x + x^2]*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] +
x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(91*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*(1 + x^3)) + (18*3^(3/4)*Sqrt[2
+ Sqrt[3]]*(91*a - 55*(1 - Sqrt[3])*b)*(1 + x)^(3/2)*Sqrt[1 - x + x^2]*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]
*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(5005*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^
2]*(1 + x^3))

Rule 809

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[
((d + e*x)^FracPart[p]*(a + b*x + c*x^2)^FracPart[p])/(a*d + c*e*x^3)^FracPart[p], Int[(f + g*x)*(a*d + c*e*x^
3)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[m, p] && EqQ[b*d + a*e, 0] && EqQ[c*d + b*e, 0]

Rule 1853

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], i}, Simp[(a + b*x^n)^p*Sum[(C
oeff[Pq, x, i]*x^(i + 1))/(n*p + i + 1), {i, 0, q}], x] + Dist[a*n*p, Int[(a + b*x^n)^(p - 1)*Sum[(Coeff[Pq, x
, i]*x^i)/(n*p + i + 1), {i, 0, q}], x], x]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ[(n - 1)/2, 0] && GtQ[
p, 0]

Rule 1878

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a,
 3]]}, Dist[(c*r - (1 - Sqrt[3])*d*s)/r, Int[1/Sqrt[a + b*x^3], x], x] + Dist[d/r, Int[((1 - Sqrt[3])*s + r*x)
/Sqrt[a + b*x^3], x], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && NeQ[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 1877

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[((1 - Sqrt[3])*d)/c]]
, s = Denom[Simplify[((1 - Sqrt[3])*d)/c]]}, Simp[(2*d*s^3*Sqrt[a + b*x^3])/(a*r^2*((1 + Sqrt[3])*s + r*x)), x
] - Simp[(3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*Elli
pticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(r^2*Sqrt[a + b*x^3]*Sqrt[(s*(
s + r*x))/((1 + Sqrt[3])*s + r*x)^2]), x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && EqQ[b*c^3 - 2*(5 - 3*Sqrt[3
])*a*d^3, 0]

Rubi steps

\begin{align*} \int (1+x)^{3/2} (a+b x) \left (1-x+x^2\right )^{3/2} \, dx &=\frac{\left (\sqrt{1+x} \sqrt{1-x+x^2}\right ) \int (a+b x) \left (1+x^3\right )^{3/2} \, dx}{\sqrt{1+x^3}}\\ &=\frac{2}{143} \sqrt{1+x} \sqrt{1-x+x^2} \left (13 a x+11 b x^2\right ) \left (1+x^3\right )+\frac{\left (9 \sqrt{1+x} \sqrt{1-x+x^2}\right ) \int \left (\frac{2 a}{11}+\frac{2 b x}{13}\right ) \sqrt{1+x^3} \, dx}{2 \sqrt{1+x^3}}\\ &=\frac{18 \sqrt{1+x} \sqrt{1-x+x^2} \left (91 a x+55 b x^2\right )}{5005}+\frac{2}{143} \sqrt{1+x} \sqrt{1-x+x^2} \left (13 a x+11 b x^2\right ) \left (1+x^3\right )+\frac{\left (27 \sqrt{1+x} \sqrt{1-x+x^2}\right ) \int \frac{\frac{4 a}{55}+\frac{4 b x}{91}}{\sqrt{1+x^3}} \, dx}{4 \sqrt{1+x^3}}\\ &=\frac{18 \sqrt{1+x} \sqrt{1-x+x^2} \left (91 a x+55 b x^2\right )}{5005}+\frac{2}{143} \sqrt{1+x} \sqrt{1-x+x^2} \left (13 a x+11 b x^2\right ) \left (1+x^3\right )+\frac{\left (27 b \sqrt{1+x} \sqrt{1-x+x^2}\right ) \int \frac{1-\sqrt{3}+x}{\sqrt{1+x^3}} \, dx}{91 \sqrt{1+x^3}}+\frac{\left (27 \left (91 a-55 \left (1-\sqrt{3}\right ) b\right ) \sqrt{1+x} \sqrt{1-x+x^2}\right ) \int \frac{1}{\sqrt{1+x^3}} \, dx}{5005 \sqrt{1+x^3}}\\ &=\frac{54 b \sqrt{1+x} \sqrt{1-x+x^2}}{91 \left (1+\sqrt{3}+x\right )}+\frac{18 \sqrt{1+x} \sqrt{1-x+x^2} \left (91 a x+55 b x^2\right )}{5005}+\frac{2}{143} \sqrt{1+x} \sqrt{1-x+x^2} \left (13 a x+11 b x^2\right ) \left (1+x^3\right )-\frac{27 \sqrt [4]{3} \sqrt{2-\sqrt{3}} b (1+x)^{3/2} \sqrt{1-x+x^2} \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} E\left (\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{91 \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \left (1+x^3\right )}+\frac{18\ 3^{3/4} \sqrt{2+\sqrt{3}} \left (91 a-55 \left (1-\sqrt{3}\right ) b\right ) (1+x)^{3/2} \sqrt{1-x+x^2} \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{5005 \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \left (1+x^3\right )}\\ \end{align*}

Mathematica [C]  time = 1.95381, size = 437, normalized size = 1.2 \[ \frac{2 x \sqrt{x+1} \sqrt{x^2-x+1} \left (91 a \left (5 x^3+14\right )+55 b x \left (7 x^3+16\right )\right )}{5005}-\frac{9 (x+1)^{3/2} \left (\frac{\sqrt{2} \sqrt{\frac{-\frac{6 i}{x+1}+\sqrt{3}+3 i}{\sqrt{3}+3 i}} \sqrt{\frac{\frac{6 i}{x+1}+\sqrt{3}-3 i}{\sqrt{3}-3 i}} \left (55 \left (3-i \sqrt{3}\right ) b-182 i \sqrt{3} a\right ) \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{-\frac{6 i}{\sqrt{3}+3 i}}}{\sqrt{x+1}}\right ),\frac{\sqrt{3}+3 i}{-\sqrt{3}+3 i}\right )}{\sqrt{x+1}}-\frac{660 \sqrt{-\frac{i}{\sqrt{3}+3 i}} b \left (x^2-x+1\right )}{(x+1)^2}+\frac{165 i \sqrt{2} \left (\sqrt{3}+i\right ) b \sqrt{\frac{-\frac{6 i}{x+1}+\sqrt{3}+3 i}{\sqrt{3}+3 i}} \sqrt{\frac{\frac{6 i}{x+1}+\sqrt{3}-3 i}{\sqrt{3}-3 i}} E\left (i \sinh ^{-1}\left (\frac{\sqrt{-\frac{6 i}{3 i+\sqrt{3}}}}{\sqrt{x+1}}\right )|\frac{3 i+\sqrt{3}}{3 i-\sqrt{3}}\right )}{\sqrt{x+1}}\right )}{10010 \sqrt{-\frac{i}{\sqrt{3}+3 i}} \sqrt{x^2-x+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[(1 + x)^(3/2)*(a + b*x)*(1 - x + x^2)^(3/2),x]

[Out]

(2*x*Sqrt[1 + x]*Sqrt[1 - x + x^2]*(91*a*(14 + 5*x^3) + 55*b*x*(16 + 7*x^3)))/5005 - (9*(1 + x)^(3/2)*((-660*S
qrt[(-I)/(3*I + Sqrt[3])]*b*(1 - x + x^2))/(1 + x)^2 + ((165*I)*Sqrt[2]*(I + Sqrt[3])*b*Sqrt[(3*I + Sqrt[3] -
(6*I)/(1 + x))/(3*I + Sqrt[3])]*Sqrt[(-3*I + Sqrt[3] + (6*I)/(1 + x))/(-3*I + Sqrt[3])]*EllipticE[I*ArcSinh[Sq
rt[(-6*I)/(3*I + Sqrt[3])]/Sqrt[1 + x]], (3*I + Sqrt[3])/(3*I - Sqrt[3])])/Sqrt[1 + x] + (Sqrt[2]*((-182*I)*Sq
rt[3]*a + 55*(3 - I*Sqrt[3])*b)*Sqrt[(3*I + Sqrt[3] - (6*I)/(1 + x))/(3*I + Sqrt[3])]*Sqrt[(-3*I + Sqrt[3] + (
6*I)/(1 + x))/(-3*I + Sqrt[3])]*EllipticF[I*ArcSinh[Sqrt[(-6*I)/(3*I + Sqrt[3])]/Sqrt[1 + x]], (3*I + Sqrt[3])
/(3*I - Sqrt[3])])/Sqrt[1 + x]))/(10010*Sqrt[(-I)/(3*I + Sqrt[3])]*Sqrt[1 - x + x^2])

________________________________________________________________________________________

Maple [B]  time = 0.129, size = 608, normalized size = 1.7 \begin{align*} -{\frac{1}{5005\,{x}^{3}+5005}\sqrt{1+x}\sqrt{{x}^{2}-x+1} \left ( -770\,b{x}^{8}-910\,a{x}^{7}+2457\,i\sqrt{3}\sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{i\sqrt{3}+2\,x-1}{-3+i\sqrt{3}}}}{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}},\sqrt{-{\frac{-3+i\sqrt{3}}{i\sqrt{3}+3}}} \right ) a-1485\,i\sqrt{3}\sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{i\sqrt{3}+2\,x-1}{-3+i\sqrt{3}}}}{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}},\sqrt{-{\frac{-3+i\sqrt{3}}{i\sqrt{3}+3}}} \right ) b-2530\,b{x}^{5}+8910\,\sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{i\sqrt{3}+2\,x-1}{-3+i\sqrt{3}}}}{\it EllipticE} \left ( \sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}},\sqrt{-{\frac{-3+i\sqrt{3}}{i\sqrt{3}+3}}} \right ) b-7371\,\sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{i\sqrt{3}+2\,x-1}{-3+i\sqrt{3}}}}{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}},\sqrt{-{\frac{-3+i\sqrt{3}}{i\sqrt{3}+3}}} \right ) a-4455\,\sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{i\sqrt{3}+2\,x-1}{-3+i\sqrt{3}}}}{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}},\sqrt{-{\frac{-3+i\sqrt{3}}{i\sqrt{3}+3}}} \right ) b-3458\,a{x}^{4}-1760\,b{x}^{2}-2548\,ax \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1+x)^(3/2)*(b*x+a)*(x^2-x+1)^(3/2),x)

[Out]

-1/5005*(1+x)^(1/2)*(x^2-x+1)^(1/2)*(-770*b*x^8-910*a*x^7+2457*I*3^(1/2)*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3
^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^(1/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*EllipticF((-2*(1+x)/(-3+I*3^(1/2))
)^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))*a-1485*I*3^(1/2)*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*
x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^(1/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*EllipticF((-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(
-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))*b-2530*b*x^5+8910*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x+1)/(I*
3^(1/2)+3))^(1/2)*((I*3^(1/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*EllipticE((-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3
^(1/2))/(I*3^(1/2)+3))^(1/2))*b-7371*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*(
(I*3^(1/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*EllipticF((-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+
3))^(1/2))*a-4455*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^(1/2)+2*x-1)/(
-3+I*3^(1/2)))^(1/2)*EllipticF((-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))*b-3458*a
*x^4-1760*b*x^2-2548*a*x)/(x^3+1)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b x + a\right )}{\left (x^{2} - x + 1\right )}^{\frac{3}{2}}{\left (x + 1\right )}^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(3/2)*(b*x+a)*(x^2-x+1)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*x + a)*(x^2 - x + 1)^(3/2)*(x + 1)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (b x^{4} + a x^{3} + b x + a\right )} \sqrt{x^{2} - x + 1} \sqrt{x + 1}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(3/2)*(b*x+a)*(x^2-x+1)^(3/2),x, algorithm="fricas")

[Out]

integral((b*x^4 + a*x^3 + b*x + a)*sqrt(x^2 - x + 1)*sqrt(x + 1), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a + b x\right ) \left (x + 1\right )^{\frac{3}{2}} \left (x^{2} - x + 1\right )^{\frac{3}{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)**(3/2)*(b*x+a)*(x**2-x+1)**(3/2),x)

[Out]

Integral((a + b*x)*(x + 1)**(3/2)*(x**2 - x + 1)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b x + a\right )}{\left (x^{2} - x + 1\right )}^{\frac{3}{2}}{\left (x + 1\right )}^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(3/2)*(b*x+a)*(x^2-x+1)^(3/2),x, algorithm="giac")

[Out]

integrate((b*x + a)*(x^2 - x + 1)^(3/2)*(x + 1)^(3/2), x)